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A new adaptive remeshing approach for unstructured meshes, which 
includes the error indicator, global and local mesh regeneration tech- 
niques, has been developed in this paper. In this approach, nodes are 
first distributed according to the remeshing parameters, and those 
nodes are connected into a complete mesh. The concepts of side-based 
and vertex-based fronts are introduced to achieve the triangulation. 
According to the CPU time and the versatility, the vertex-based 
triangulation technique is proved to be more efficient. By using vertex- 
based triangulation approach, a local remeshing method, which 
regenerates only some regions of the flow domain, is presented. To 
demonstrate the reliability and availability of the proposed procedure, 
several compressible f low problems are investigated. The regular/ 
stretched triangles and the mixed type of triangular and quadrilateral 
stretched elements are used. In this work, the Euler equations are solved 
by the multi-step Runge-Kutta Galerkin finite element methods. From 
the numerical results, the approaches, which employ the directionally 
stretched elements, are effective and suitable for treating the flow 
problems with one-dimensional features. The development of the local 
remeshing algorithm for unsteady flows is worthwhile and important. 
~) 1992 Academic Press, Inc. 

1. INTRODUCTION 

In the recent years, unstructured meshes have been widely 
used in computational fluid dynamics. Several mesh genera- 
tion approaches have been developed. Given a set of points, 
Delaunay triangulation [ 1-3 ] and front technique [4] were 
respectively used to form triangles by properly connecting 
these nodes. Lo [53 generalized the notion of Delaunay 
triangulation to non-convex planar domains by integrating 
the method of advancing front and the Delaunay triangula- 
tion algorithm. On the other hand, one advancing front 
method, which generates nodes and elements at the same 
time, was developed by Peraire et  al. [6]. 

In order to have more accurate numerical solutions, 
various grid adaptation methods have been used to solve 
problems with high gradient features, such as shock in com- 
pressible flow. Three typical grid adaptation techniques, 
mesh movement [7], mesh refinement [7-11] and mesh 
regeneration E63, have been developed. For the mesh move- 

ment, nodes are moved to new positions without increasing 
total number of nodes, so that the resolution of the final 
computation is limited by the initial grid [6]. Mesh refine- 
ment was devised to increase the number of nodes in the 
regions with high solution gradients. Though high-resolu- 
tion results may be obtained, the refinement technique does 
not efficiently treat the areas with one-dimensional flow 
features [-6]. Another method developed by Peraire et  aI. 

[6] shows a direction in adaptive grid generation, in which 
the new mesh on the overall domain is created according to 
solutions on the previous mesh. The main advantage of this 
method is that it allows efficient simulation of one-dimen- 
sional flow features by generating elements which are direc- 
tionally stretched. As mentioned in Ref. [6], even though a 
full analysis of influence of stretching on the accuracy of 
solution has not been performed, the numerical computa- 
tions indicate that good accuracy can still be maintained. 
Thornton et  al. [12, 13] developed a remeshing approach 
which uses quadrilateral elements where possible, and tri- 
angles are introduced as needed. As mentioned in Ref. [123, 
this remeshing technique is suitable for boundary layers 
and takes considerably less computer storage in 3D 
applications. For the transient problems, Lohner [14] 
discussed the features of adaptive remeshing and refinement 
techniques. A combination of adaptive remeshing and 
h-refinement was introduced to investigate strongly 
unsteady flows. For moving boundary problems, Probert 
et  al. [ 15 ] employed and extended a remeshing technique 
[63 to achieve the local regeneration of the grid. As 
indicated in Ref. [14], partial remeshing is an area that 
deserves further study, particularly if shocks change 
direction. 

It is known that error indicators play an important 
role in the solution-adaptive procedures. Depending on 
the second derivatives of a key variable or the second 
derivatives of gradients of the variable, several kinds of 
error indicators for directional remeshing were used 
[6, 13, 14]. In the present paper, a new error indicator, 
which simply uses first derivatives, is developed to decide 
the directional remeshing parameters: node spacing, ratio 
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and direction of stretching. In order to achieve the global or 
local remeshing, a straightforward regeneration algorithm is 
also presented. Two independent steps, distribution of 
nodes and triangulation, are employed in this work. For the 
placement of nodes, two types of node-clustering proce- 
dures are introduced to determine the positions of interior 
points for the regular and stretched elements, respectively. 
With regard to the formation of triangles, the concepts of 
side-based and vertex-based fronts are presented. From the 
numerical experiments, the vertex-based triangulation 
technique is more efficient. Combining the adaptive mesh 
generation technique mentioned above with a recovering 
procedure, the local remeshing method, which regenerates 
only some part of the flow domain, is successfully 
developed. Because of this progress, the coupling of time- 
varying meshes with flow solver becomes a possible and 
efficient way to treat the unsteady flow problems. To 
illustrate the reliability and availability of the present proce- 
dure, several compressible flow problems, which include 
supersonic flow over a compression corner, shock reflection 
at a wall, supersonic flow passing through a channel with 
a 4% circular are bump, transonic flow around a two- 
element airfoil, and shock propagation in a channel, are 
investigated. The regular/stretched triangles and the mixed 
type of triangular and quadrilateral stretched elements are 
used. In this paper, the Euler equations are solved by the 
multi-step Runge-Kutta Galerkin finite element methods. 

gradients of solution. It has the advantages that "eating-up" 
effect [ 14] in the presence of a very strong shock is avoided 
and the wiggles or ripples can be filtered. As mentioned in 
Ref. [14], this type of error indicator cannot meet the 
requirement that the generated grids do not exhibit an 
element size much smaller than the prescribed minimum 
element size. Superior grids can be achieved by smoothing 
and limiting the initial distribution of remeshing parameters 
[ 14]. In this paper, a direct and simple approach is devised. 
Three parameters are used for the construction of a new 
mesh: node spacing 6, direction of stretching ~, and 
stretching ratio S. The unit vector a represents the direction 
along which an element is to be stretched. 6 and 6S are the 
spacings normal and tangential to the vector a, respectively. 
The following procedures are proposed to find the 
remeshing parameters. 

A. Node Spacing 

Node spacing must be smaller in regions of large change 
in properties and may be evaluated by several kinds of error 
indicators that have been used in non-directional grid 
adaptation methods [7-11 ]. For simplicity, node spacing is 
evaluated by the expression 

6~ IV~01,= const, (2.1) 

where 

2. ERROR INDICATOR 

In the solution-adaptive approach, an indicator is 
required to evaluate the local "error" of the numerical solu- 
tion. The major difference of error indicators for the direc- 
tional and non-directional grid adaptation is that stretching 
parameters are needed for the former approach. For the 
directional mesh generation, three types of error indicators 
are available. They are described as follows: 

1. An indicator by the second derivatives of a key 
variable [6]. 

2. The multiple indicators which are obtained by the 
second derivatives of a key variable and the second 
derivatives of gradients of the key variable [ 13 ]. 

3. A modified error indicator based on scaled second 
derivatives [ 14]. 

All the above error indicators are essentially based on the 
second derivatives. As mentioned in Ref. [13], the first 
indicator will result in larger elements in the center of a 
shock, while the second error indicator overcomes this 
problem. With regard to the multiple indicators, it is 
required to compute two sets of parameters and select the 
preferred one. For the third type of error indicator, the 
second derivatives are scaled by nodal mean values and 

q) = the selected key variable 

6i = the spacing at node i 

I V~0li = absolute value of the gradient 

of ~o at node 1". 

For the computations of compressible flows, the density is 
selected as the key variable. The constant in Eq. (2.1) is 
determined by the product of a specified minimum node 
spacing and the absolute value of the maximum solution 
gradient over the whole mesh. 

B. Direction of Stretching 

The direction of solution gradient is the direction of maxi- 
mum change in the solution, and it is expected that the 
nodal direction of stretching is normal to the direction of 
nodal gradients. Thus the stretching direction is easily 
obtained when the nodal solution gradients are computed. 
Let n; be the unit vector of nodal solution gradient and ai be 
the unit vector which is normal to hi, i.e., 

( V q ) ) i  
n i - -  ]V~01i ( 2 . 2 )  
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and 

ni.ai=0. (2.3) 

tion is shown in Fig. 1. According to this figure, the varia- 
tion of stretching directions between nodes i and j, A 0, is 
obtained by the expression 

The direction of stretching, a~, is expressed in a one- 
parameter form by the angle q~i: 

a~ = (cos ~b,)i + (sin ~bi)j. (2.4) 

Since either ~t~ or - a e  can be regarded as the direction of 
stretching, the value of the angle ~b~ is defined in the range of 
0 and 180 °. 

C. Stretching Ratio 

The stretching ratio is expected to be large in regions 
where the flow is nearly one-dimensional. The flow structure 
in these regions can be evaluated by the variation of 
stretching directions. In order to find out the stretching 
ratio, the change of stretching directions must be defined. 
Let a~, aj, and ak be the stretching directions of the three 
nodes i, j, and k of an element e, and ~bi, ~bj, and ~bk are the 
corresponding angles defined by Eq. (2.4). The configura- 

where 

A 0 = Min(01, 02), (2.5) 

01 = I~bi- ~bjl (2.6) 

02 = 1180 ° - 011. (2.7) 

Similarly, Ajk and Aki are evaluated. The change of 
stretching direction of the element e is found by the average 
of A U, Ajk, and zlki, i.e., 

Ae = (A~j+ djk + Ak~)/3. (2.8) 

After A e is computed for all elements, the variation of 
the angle ~b, (A~b)~, is calculated for all nodes by the area- 
weighted average: 

zenbe 1 A e • A e 

( A ~ ) i  = ~ n b e  Ae ( 2 . 9 )  
z..~e = 1 
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FIG. 1. Geometrical definitions ofai ,  %, ak, ~i, ~j, ~bk, 01, and 02. 
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Where Ae is the area of element e, and nbe represents the 
number of elements which surround the node i. Similar to 
the node spacing in Eq. (2.1), the stretching ratio at node i, 
Se, is obtained by the relations 

S2(AO)i = const (2.10) 

and 

f Srnin if Si < S~in, 

S i -~- ~S i if Smi n ~ S i ~ S . . . .  

Smax if Si > S . . . .  

(2.11) 

2 where the constant in Eq. (2.10) is taken as  Srnin(ZJ~)avg, 

and (A~b)avg is the average value of (A~b) i over the whole 
mesh. Smin and Smax are the specified values of minimum 
and maximum stretching ratios. In this paper, Smi, is chosen 
as 1.0. 

3. MESH GENERATION 

The present mesh generation method is composed of 
three steps: construction of background grid, generation of 
boundary and interior nodes, and formation of triangles by 
front concept. For the distribution of interior points, two 
kinds of node-clustering techniques are suggested respec- 
tively for the regular and stretched elements. Concerning the 
triangulation, two methods, which utilize the concepts of 

side-based and vertex-based fronts, are presented. The first 
method is an extension of Lo's approach [4], so that both 
the regular (stretching ratio equal to one) and stretched 
(stretching ratio greater than one) triangles can be formed. 
In the second method, the front is represented by the vertices 
instead of the sides. Basically, the first method forms one 
triangle in one process, but the second method may 
generate more than one triangle in one process. Unlike the 
usual mesh generation methods, no smoothing process 
is operated in this work after the step of triangulation is 
accomplished. After finishing the triangulation, the mixed 
type of meshes, which include triangles and quadrilaterals, 
can be achieved by combining two triangles into a quadri- 
lateral. The details of the mesh generation technique are 
described as follows: 

3.1. Background Grid 

The construction of the background grid has been intro- 
duced in Ref. [6]. This grid, which is required to cover the 
solution domain completely, is used to provide a piecewise 
linear spatial distribution of the three important rerneshing 
parameters 6, a, and S. The parameters must be specified or 
computed from the solution for each node on the back- 
ground grid. 

3.2. Generation of Nodes 

The computational domain is defined by several bound- 
aries which are composed of a series of points. Those points 
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FIG. 2. Generation of clustering nodes around the active node i: (a) stretched mesh; (b) regular mesh. 
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are specified counterclockwise for external boundaries and 
clockwise for internal boundaries. Boundary nodes are 
added according to the information provided by the 
remeshing parameters on the background grid. For  curved 
boundaries, the end points are specified and the database 
with fine-enough spacing (for example, 500 or 1000 points 
for upper surface of an airfoil) is used to generate the new 
nodes. 

Starting from boundary nodes, interior points are 
generated by clustering new nodes around the existing ones. 
At the beginning of the process, all existing nodes are 
termed active. It means that those nodes are available for 
clustering new grid points. The following steps are involved 
in the distribution of interior points: 

(a) Choose an active node i as a base. For obtaining the 
better distribution of grids, it is suggested that the node with 
smallest spacing is processed first. 

(b) To create the stretched elements, eight nodes are 
clustered around the node i by the way shown in Fig. 2a. 
For generation of regular mesh, another approach shown in 
Fig. 2b is used. The rectangle with eight nodes is replaced by 
the hexagon with six nodes. If any of those clustered nodes 
is too close to any existing nodes or locates itself out of the 
domain, the node is deleted from the list of clustered nodes. 
The remaining clustered nodes are taken as the new nodes. 

(c) Add those new nodes into the list of active nodes. 
Based on the values on the background grid, the remeshing 
parameters (61. nt, S.I. nt, and  (lint]j , for each new node are 
obtained by linear interpolation. If a smooth transition of 
grids in areas with an abrupt change of node spacing is 
needed, the values of 6i/nt at the clustered node j  is evaluated 
by 

5 new = w(Si. nl -~ (1 -- W) •i 
.I I (3.1) 

where 5i is the spacing of the node i, a n d  6j ew is the new 
value of the parameter at nodej. The factor w is less than 1.0 
and the value is decided by the need of smoothness of the 
resulting mesh. 

When the above clustering procedures are finished, the 
node i is removed from the list of active nodes. The creation 
of interior nodes is completely achieved as the number of 
active nodes is reduced to zero. 

3.3 Tr iangu la t ion  by  S i d e - B a s e d  F r o n t  

The procedures of triangulation are basically based on 
Lo's approach [4],  and some extensions have been made to 
form triangles that are directionally stretched. Initially, the 
front is defined by the collection of boundary segments. Any 
side on the front is called the "active side," which is available 
for forming triangles. Starting from the initial front, 
triangular elements are generated in the following steps: 

(a) Select an active side, which has the smallest spacing, 
as the acting side. Let the end nodes be denoted by Na and 
Nb, and the remeshing parameters of this acting side are 6,, 
tt s, and S,. Make the local coordinates (if, y) at the mid- 
point of the side, such that y coordinate is aligned with as 
and scaled by a factor S,. 

(b) From the regions enclosed by the current front, find 
candidate nodes which lie at the left of the acting side. Sort 
candidate nodes by their distances to the midpoint in the 
local coordinates. 

(c) From the sorted candidate nodes, find the best node 
Nc by Lo's formula [4] in the local coordinates. Form the 
triangle N a N b N c  such that it does not contain any other 
candidate node and the line segments NAN,.  and N b N ~  do 
not intersect any existing sides. After forming the triangle, 

N ~  1"1 

Ni eb Nb 
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Generation of pseudo points for the active vertex N~: (a) NOD = 2; (b) NOD = 3. 
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FIG. 4. Typical cases of triangulation for a vertex N i. 

the acting side NaN b is deleted from the list of active sides 
and the current front is updated. 

The triangulation process stops if there is not any active 
side. Though this triangulation method is quite straight- 
forward, it is still required to check the intersection of sides 
and make a transformation of the coordinates. In this paper, 
another approach, which avoids these cumbersome and 

inefficient actions, is developed. The details are described in 
the following part. 

3.4. Triangulation by Vertex-Based Front 

Instead of using boundary sides, the initial front is com- 
posed of boundary vertices. A vertex is defined by a com- 
mon node of two consecutive segments which are located on 
the front. Initially, all vertices on the front are termed 
"active vertices", which are available for triangulation. The 
steps are described as follows: 

(a) Choose an active vertex Ni which has the smallest 
vertex angle. As shown in Fig. 3, the associated nodes are 
denoted by N,~ and Nb. The parameters/~i, la, and lb repre- 
sent the vertex angle, length of line segments NaNi, and 
NiNb. 

(b) Define the parameter NOD (number of division) as 
the nearest integer of ~i/(z~/3). The ( N O D - 1 )  "pseudo 
points" are located in the ways shown in Fig. 3. Positions of 
the pseudo points depend on the values of NOD, la, and l b. 
If the value of NOD is not greater than one, no pseudo point 
is needed. When NOD is equal to two, one pseudo point is 
located with l=wl(lalb) 1/2 and Afl=fli/2. For the case 
of NOD=3,  two pseudo points are generated with 
l 1 = wt(lZlb) 1/3, 12 = wt(lal~) 1/3, and Ap = ~i/3 (see Fig. 3b). 
The formulas to generate the pseudo points are similar to 
those of Ref. [-16]. The factor wl, which is typically less than 
1.0, is used to control the positions of the pseudo points. 

(c) For  each pseudo point, the node which is the nearest 
to that point is selected. Triangles can be formed by using 
those selected nodes. Some typical cases are shown in Fig. 4. 
If any of the newly formed triangular elements contains any 
nodes, it is decoupled into several triangles, such as the 
cases shown in Fig. 5. The front is updated by deleting the 
current vertex and adding new ones to the list of active 
vertices. 

N. 

FIG. 5. 

b /V, 

Mx 

w 

Nb Ni 

Reformation of the triangle which includes nodes: (a) Original triangle; (b) new configuration of triangles. 
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D 

C C 

B A B 

FIG. 6. Reformation of those triangles which are badly formed: (a) original configuration; (b) new configuration. 

The triangulation stops when the number of vertices on 
the front is reduced to zero. If any of triangles is badly 
formed, a post-processor is activated. As shown in Fig. 6, 
the triangles ABC and ACD are reformed into triangles 
ABD and BCD if 

Max(b, d) > (a 1 + as) 

and 

Max(b, d) > (cl + c2), 

where a~, a2, b, c~, c2, and d are the angles of triangular 
elements ABC and ACD. Unlike the side-based triangula- 
tion technique, the vertex-based approach can be used to 
generate triangles without local coordinate transformation. 
According to the numerical experiments, it is not necessary 
to check the intersection of sides if w~ is less than 0.5. Based 
on the CPU time, a primary comparison of those two 
triangulation approaches is shown in Section 6. The vertex- 
based front technique is much more efficient. 

3.5. Mixed Type of Triangular and Quadrilateral Meshes 

If the common side of any two triangles is the longest side 
of those two triangles, they are combined into a new 
quadrilateral. After the combination, only data about the 
elements are changed and the nodal data remain the same. 

4. IMPLEMENTATION OF LOCAL REMESHING 

All remeshing procedures try to redistribute grid points in 
the optimum way when numerical solutions on the present 
grid are obtained. If the steady-state problems are solved, 
the regeneration of mesh is done only a few times, so that 
speed of the grid adaptation is not a criticial factor. For the 
unsteady flows, meshes are changed with time to simulate 
the unsteady phenomena, so that the mesh regeneration 
process has to be efficient. It seems too redundant to 
regenerate the whole mesh if the flow properties change 

in limited regions. Lohner [14] combined the global 
remeshing with conventional h-refinement for strongly 
unsteady flows, and he suggested that partial remeshing, 
particularly if the shocks change direction, is an area which 
deserves further study. 

The global remeshing starts to form triangles from 
the initial front composed of boundary segments. In the 
proposed local remeshing, the concept of the vertex-based 
front is employed. Some elements are recovered from the 
background grid and the front is advancing at the same 
time. Due to this recovering process, the flow region to be 
regenerated is reduced. Details of the recovering procedure 
are described as follows: 

(a) By using the mesh generation procedure, a new 
mesh, and the associated parameters, 6 °, ~b °, and S °, are 
obtained from the previous mesh. On the current mesh, a 
solution is computed. Based on this solution, the remeshing 
parameters, 67, (~7, and $7, are evaluated. It should be 
mentioned that those parameters with superscripts o and n 
represent old and new values on the same mesh. 

(b) The elements with node i must be regenerated if any 
one of the relations 

Min(I,kT- q~° I, 180-Iq~7- ~b° l) > ~bcrit (4.1) 

S" S" ~ i ~  
~ i  < K  1 or K2 (4.2) 
s7 s7 

6o K1 or 60 K2, (4.3) 

is satisfied, where ~crit is the specified tolerance of variation 
in stretching direction, and KI and K2 are constants. In this 
work, the values of ~borit, KI and K2 are taken as 10 °, 0.9 and 
1.5. If the element is not to be regenerated, it is put into the 
recovering list. 

(c) Starting from a node on the initial front, those 
elements, which contain this node and belong to the 
recovering list, are directly picked up as the new ones 
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without changing the original configurations. This process 
is continued node by node, and the front is updated untill all 
the elements in the recovering list have been checked. 

After the recovered front is obtained, the procedures of 
global remeshing are applied to regions enclosed by this 
front. 

Since the time required for recovering elements and nodes 
is much less than that of the other procedures, more CPU 
time can be reduced if more elements are recovered. To 
indicate the performance of the local remeshing, the 
recovery rate of nodes (RR) is defined and expressed by the 
following form: 

No. of recovered nodes 
RR = (4.4) 

Total no. of nodes 

5. SOLUTION ALGORITHM 

In this study, the conservative form of two-dimensional 
Euler equations is solved. About the spatial discretization, 
the Galerkin approach is employed. Linear and bilinear 
shape functions are used for triangular and quadrilateral 
elements, respectively. To suppress the numerical oscilla- 
tions, the second- and fourth-order dissipation terms [3] 
are introduced. For steady-state problems, a four-step 
Runge-Kutta time integration method with local time 
stepping [173 is used to obtain a fast convergence. For 
shock propagation problem, two-step Runge-Kutta time 
integration method [18] is applied to obtain solutions with 
second-order time accuracy. 

6. RESULTS AND DISCUSSION 

In order to demonstrate the performance of the proposed 
grid adaptation algorithms, some numerical examples, 
which include steady, unsteady, external, and internal flow 
problems, are presented. 

6.1. Comparison of Two Triangulation Approaches 

To compare the performance of the proposed triangula- 
tion procedures, two regular meshes which have the same 
nodal distributions in the square domain are respectively 
generated by the side-based and vertex-based fronts. From 
those numerical results in Fig. 7, the CPU time (run on 
VAX 8600) of side-based triangulation grows much faster 
than that of the vertex-based triangulation, when the 
number of elements increases. 

6.2. Supersonic Flow over a Compression Corner 

The first problem investigated in this paper is a super- 
sonic flow (Moo = 3) over a compression corner with 15 °. 
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/ 

•// 

•." 

/" 
/~ 

0.0 500.0 1000 .0  1500.0 2000.0 2500.0 

ELEMENT NO. 

FIG. 7. Comparison of CPU time for side-based and vertex-based 
triangulations. 

To confirm the availability of the present adaptive mesh 
generation technique and understand the effect of stretching 
meshes on the numerical solutions, the global remeshing 
about the regular triangles, stretched triangles, and mixed 
type of stretched triangles and quadrilaterals is employed to 
compare with conventional h-refinement. By using the 
triangular elements, the initial mesh and corresponding 
pressure contours are shown in Fig. 8. About the isobaric 
lines in Figs. 8-12, the maximum and minimum values of 
pressure are 0.7 and 2.0, respectively, and the increment is 
0.05. By dividing one triangle into four small ones in high 
gradient regions, the final grid system and the pressure con- 
tours, which are obtained after three mesh refinements, are 
presented in Fig. 9. It is obvious that a large number of 
elements are added in the shock region. To obtain the 
pressure contours which are similar to the results on the 
final mesh in Fig. 9, two successive remeshings are operated. 
The sequence of meshes with regular triangles and the 
corresponding contours are shown in Fig. 10. It is apparent 
that the adaptive mesh regeneration technique can provide 
reasonable grid systems and is more flexible than the con- 
ventional mesh refinement approach. By introducing the 
stretched triangles and mixed type of elements, the meshes 
and related results are given in Figs. 11 and 12. The com- 
parison of results in Figs. 10 and 11 indicates that the node 
numbers of stretched meshes are about half of those of 
regular meshes. As shown in Figs. 11 and 12, the meshes 
in the shock regions are directionally stretched and the 
grid lines are almost aligned with the shock. This fact 
demonstrates that the present error indicator and mesh 
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a b 

FIG. 8. Supersonic flow over a compression corner (triangular elements) : (a) initial mesh; (b) pressure contours (minimum = 0.7, maximum = 2.0, 
increment = 0.05). 

a b 

FIG.  9. Supersonic flow over a compression corner (adaptive refinement): (a) final mesh; (b) pressure contours (minimum = 0.7, maximum = 2.0, 
increment = 0.05). 

a b 

1 
FIG.  10. Supersonic flow over a compression corner (adaptive remeshing, regular triangles): (a) the sequence of meshes; (b) pressure contours 

(minimum = 0.7, max imum = 2.0, increment = 0.05). 
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a b 

107 

FIG. 11. Supersonic flow over a compression corner (adaptive remeshing, stretched triangles): (a) the sequence of meshes; (b) pressure contours 
(minimum = 0.7, maximum = 2.0, increment = 0.05). 

b 

FIG. 12. Supersonic flow over a compression corner (adaptive remeshing, mixed type of stretched elements): (a) the sequence of meshes; (b) pressure 
contours (minimum = 0.7, maximum = 2.0, increment = 0.05). 
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FIG. 14. Wall pressure distributions of shock reflection at a wall: (a) refinement; (b) remeshing (regular triangles); (c) remeshing (stretched 
triangles); (d) remeshing (mixed type of stretched elements). 
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a b 

C 
d 

FIG. 15. The sequence of meshes for the supersonic flow (M~ = 1.4) passing through a channel with a 4% circular arc bump: (a) 526 elements, 
304 nodes; (b) 2523 elements, 1332 nodes; (c) 3422 elements, 1786 nodes; (d) 2941 elements, 1539 nodes. 

generation technique are reliable and suitable for treating 
the flow problems with one-dimensional features. 

6.3. Shock Reflection at a Wall 

To further evaluate the remeshing procedure, the second 
problem, an oblique shock reflection at a wall with inlet 
Mach number 2.9, is studied. The problem definition and 
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FIG. 16. Mach number distribution along the lower wall surface for 
the supersonic flow (Moo = 1.4) passing through a channel with a 4% 
circular arch bump. 

computational domain are depicted in Fig. 13. By using 
three successive refinements, the resulting pressure distribu- 
tions along the wall surface are given in Fig. 14a. When the 
global remeshing technique is applied to obtain regular 
triangles, stretched triangles, and mixed type of stretched 
elements respectively, the corresponding pressure distribu- 
tions are plotted in Figs. 14b-d. Comparing with the 
exact solutions, the reasonable results are obtained. The 
approaches, which employ stretched triangular meshes and 
stretched mixed meshes, are the most effective since they 
give the comparative accuracy of solutions with much fewer 
nodes and elements. 

6.4. Supersonic Flow Passing through a Channel with a 4 % 
Circular Arc Bump 

In this example, the supersonic flow (Moo = 1.4) passing 
through a channel with a 4 % circular arc bump is studied. 
Figure 15 shows the sequence of globally regenerated 
meshes, which clearly indicate the complex shock structure. 
In Fig. 16, the distribution of Mach number along the lower 
wall surface is compared to Ni's result [-19]. From this com- 
putation, the reliability and availability of the presently 
global remeshing algorithm is proved again. 

6.5. Transonic Flow around a Two-Element Airfoil 

To show the capability o f  the proposed adaptive 
remeshing procedure in handling problems with more 
geometrical complexity, the transonic flow ( M ~ = 0 . 7 )  
around a two-element airfoil is investigated. The computa- 
tional domain is taken as 21c x 20c, where c is the chord 
length. The initial grid system which contains 1887 nodes 
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FIG. 17. (a) Initial mesh; (b) the corresponding Mach number contours (increment = 0.025) for the transonic flow (M~ = 0.7) around a two-element 
airfoil. 

and 3544 elements, and the corresponding Mach  number  
contours  are shown in Fig. 17. The results after three global 
remeshings are plotted in Fig. 18. F rom this final mesh 
(2495 nodes and 4813 elements) and the Mach  number  
contours,  the resolution of the results a round  the shock is 
improved. 

6.6. Shock Propagation in a Channel 

The availability of the present local remeshing method in 
solving transient problems is evidenced by this example. 
The shock with a shock Mach  number  1.4 moves to right 
side of a channel from the position X = 0 . 0  at T = 0 . 0 .  

- - - S O N I C  L I N E  

b 

/ 
FIG. 18. (a) Final mesh; (b) the corresponding Mach number contours (increment = 0.025) for the transonic flow (M~ = 0.7) around a two-element 

airfoil. 
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FIG. 21. Locally regenerated meshes for the Shock propagation in a channel at (a) T= 0.0, (b) T = 0.2, (c) T = 0.4, (d) T = 0.6, (e) T = 0.8, and 
(f) T =  1.0. 

Figure 19 shows the definition and computational domain 
of this problem. To understand the characteristics of local 
remeshing approach, the time-varying meshes, and three 
fixed meshes which contain 810, 9000, and 32,490 elements, 
respectively, are used. In this example, the time-varying 
meshes are locally regenerated every 10 time-steps. The 
minimum and maximum nodal spacings are equal to those 
used in the finest and coarsest fixed meshes, respectively. 
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FIG.  22. Errors for the shock propagation in a channel on the fixed 
and adaptive meshes. 

The solutions on all meshes are achieved by advancing 
at the constant time step corresponding to the Courant 
number of 4.0 based on the minimum nodal spacing. For the 
fixed and adaptive grid systems, the density distributions 
along lower wall at T=0.0,  0.2, 0.4, 0.6, 0.8, and 1.0 are 
plotted in Fig. 20, and the corresponding time-varying 
meshes are shown in Fig. 21. The average number of 
elements of the adaptive meshes is 2073, and the average 
recovery rate is 65.66 %. Comparing with the exact solu- 
tions, the numerical oscillations are larger and increase with 
time if the meshes are fixed. To quantitatively evaluate the 
accuracy of present solutions, the "error" of the numerical 
results is defined by the expression [20], 

]errl = 4~_~N51 (f)i--Pi)2/NP, (6.1) 

where Pi and ~3 i are the exact and numerical solutions 
respectively at node i, and NP is the number of nodes of a 
base-grid which contains 71 x 15 nodes. For a node in place 
of the discontinuity, the exact solution is taken as the 
average value of solutions in both sides of the discontinuity. 
The numerical solution at each node of the base-grid is 
obtained by interpolation. As shown in Fig. 22, the errors of 
the solutions on finest mesh are smaller than those on adap- 
tive meshes at the initial stage. As time increases, the errors 
obtained by the finest mesh grow much faster than those 
obtained by adapted meshes. At T =  1.0, the error of adap- 
tive solutions is the smallest among all solutions. To further 
understand the performance of the local remeshing algo- 
rithm, the CPU time required for recovering elements and 
creating new ones are investigated. For the meshes shown in 
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Fig. 21f, the CPU time for recovering 1028 nodes and 1729 
elements is 3.07 s on the VAX 8600 system, and it takes 
10.27 s to generate 322 new nodes and 783 elements. From 
the above discussion, the present local remeshing technique 
is reliable, and it provides an important and efficient way to 
study the unsteady problems. 

7. CONCLUSIONS 

A new adaptive remeshing approach for unstructured 
meshes, which includes the error indicator, global and local 
mesh regeneration techniques, has been presented. Based on 
the first derivatives of a key variable, an error indicator is 
developed to decide the remeshing parameters. In this 
approach, nodes are first distributed according to the 
remeshing parameters, and those nodes are connected into 
a complete mesh. Distribution of nodes are successfully 
achieved by the proposed two kinds of node-clustering 
techniques. The side-based and vertex-based fronts are 
introduced for triangulation, and the vertex-based tri- 
angulation technique is shown to be more efficient. By using 
vertex-based triangulation approach, a local remeshing 
method for shock propagation in a channel is presented. 
Several compressible flow problems are investigated to 
demonstrate the reliability of the proposed procedure. The 
regular/stretched triangles and the mixed type of triangular 
and quadrilateral stretched elements are used. From the 
numerical results, the approaches, which employ the direc- 
tionally stretched elements, are effective and suitable for 
treating the flow problems with one-dimensional features. 
The development of a local remeshing algorithm, which 
provides a possible and efficient way to couple the time- 
varying meshes with flow solver for unsteady flows, is 
worthwhile and important. For unsteady flows, further 
study on the interpolation, error indicator, and criterion of 

elements recovery is useful to enhance the performance of 
the local remeshing algorithm. 
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